无监督的异常检测(UAD)只需要正常(健康)训练图像是实现医学图像分析(MIA)应用的重要工具,例如疾病筛查,因为通常难以收集和注释异常(或疾病)MIA中的图像。然而,严重依赖于正常图像可能导致模型训练过度填写正常类。自我监督的预训练是对这个问题的有效解决方案。遗憾的是,从计算机视觉调整的当前自我监督方法是MIA应用的次优,因为它们不探索设计借口任务或培训过程的MIA域知识。在本文中,我们提出了一种为MIA应用设计的UAD的新的自我监督的预训练方法,通过对比学习(MSACL)命名为多级强大增强。 MSACL基于新颖的优化,以对比正常和多种合成的异常图像,每个类在欧几里德距离和余弦相似度方面强制形成紧密和密集的聚类,其中通过模拟变化数量的病变形成异常图像在正常图像中的不同尺寸和外观。在实验中,我们表明,我们的MSACL预培训使用结肠镜检查,眼底筛选和Covid-19胸部X射线数据集来提高SOTA UAD方法的准确性。
translated by 谷歌翻译
我们考虑有限混合物(MFM)和Dirichlet工艺混合物(DPM)模型的贝叶斯混合物。最近的渐近理论已经确定,DPM高估了大型样本的聚类数量,并且两类模型的估计量对于不指定的群集的数量不一致,但是对有限样本分析的含义尚不清楚。拟合这些模型后的最终报告的估计通常是使用MCMC摘要技术获得的单个代表性聚类,但是尚不清楚这样的摘要估计簇的数量。在这里,我们通过模拟和对基因表达数据的应用进行了研究,发现(i)DPM甚至在有限样本中高估了簇数的数量,但仅在有限的程度上可以使用适当的摘要来纠正,并且(ii)(ii) )错误指定会导致对DPM和MFM中集群数量的高估,但是结果通常仍然可以解释。我们提供了有关MCMC摘要的建议,并建议尽管MFM的渐近性能更具吸引力,这提供了强大的动力来偏爱它们,但使用MFMS和DPMS获得的结果通常在实践中非常相似。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
Making histopathology image classifiers robust to a wide range of real-world variability is a challenging task. Here, we describe a candidate deep learning solution for the Mitosis Domain Generalization Challenge 2022 (MIDOG) to address the problem of generalization for mitosis detection in images of hematoxylin-eosin-stained histology slides under high variability (scanner, tissue type and species variability). Our approach consists in training a rotation-invariant deep learning model using aggressive data augmentation with a training set enriched with hard negative examples and automatically selected negative examples from the unlabeled part of the challenge dataset. To optimize the performance of our models, we investigated a hard negative mining regime search procedure that lead us to train our best model using a subset of image patches representing 19.6% of our training partition of the challenge dataset. Our candidate model ensemble achieved a F1-score of .697 on the final test set after automated evaluation on the challenge platform, achieving the third best overall score in the MIDOG 2022 Challenge.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Data-driven models such as neural networks are being applied more and more to safety-critical applications, such as the modeling and control of cyber-physical systems. Despite the flexibility of the approach, there are still concerns about the safety of these models in this context, as well as the need for large amounts of potentially expensive data. In particular, when long-term predictions are needed or frequent measurements are not available, the open-loop stability of the model becomes important. However, it is difficult to make such guarantees for complex black-box models such as neural networks, and prior work has shown that model stability is indeed an issue. In this work, we consider an aluminum extraction process where measurements of the internal state of the reactor are time-consuming and expensive. We model the process using neural networks and investigate the role of including skip connections in the network architecture as well as using l1 regularization to induce sparse connection weights. We demonstrate that these measures can greatly improve both the accuracy and the stability of the models for datasets of varying sizes.
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Vocal Bursts -- short, non-speech vocalizations that convey emotions, such as laughter, cries, sighs, moans, and groans -- are an often-overlooked aspect of speech emotion recognition, but an important aspect of human vocal communication. One barrier to study of these interesting vocalizations is a lack of large datasets. I am pleased to introduce the EmoGator dataset, which consists of 32,040 samples from 365 speakers, 16.91 hours of audio; each sample classified into one of 30 distinct emotion categories by the speaker. Several different approaches to construct classifiers to identify emotion categories will be discussed, and directions for future research will be suggested. Data set is available for download from https://github.com/fredbuhl/EmoGator.
translated by 谷歌翻译
Charisma is considered as one's ability to attract and potentially also influence others. Clearly, there can be considerable interest from an artificial intelligence's (AI) perspective to provide it with such skill. Beyond, a plethora of use cases opens up for computational measurement of human charisma, such as for tutoring humans in the acquisition of charisma, mediating human-to-human conversation, or identifying charismatic individuals in big social data. A number of models exist that base charisma on various dimensions, often following the idea that charisma is given if someone could and would help others. Examples include influence (could help) and affability (would help) in scientific studies or power (could help), presence, and warmth (both would help) as a popular concept. Modelling high levels in these dimensions for humanoid robots or virtual agents, seems accomplishable. Beyond, also automatic measurement appears quite feasible with the recent advances in the related fields of Affective Computing and Social Signal Processing. Here, we, thereforem present a blueprint for building machines that can appear charismatic, but also analyse the charisma of others. To this end, we first provide the psychological perspective including different models of charisma and behavioural cues of it. We then switch to conversational charisma in spoken language as an exemplary modality that is essential for human-human and human-computer conversations. The computational perspective then deals with the recognition and generation of charismatic behaviour by AI. This includes an overview of the state of play in the field and the aforementioned blueprint. We then name exemplary use cases of computational charismatic skills before switching to ethical aspects and concluding this overview and perspective on building charisma-enabled AI.
translated by 谷歌翻译